三相磁阻式步進電動機模型的結構示意圖如概述圖所示。它的定、轉子鐵心都由硅鋼片疊成。定子上有六個磁極,每兩個相對的磁極繞有同一相繞組,三相繞組接成星形作為控制繞組;轉子鐵心上沒有繞組,只有四個齒,齒寬等于定子極靴寬。
步進電機加減速過程控制技術
正因為步進電機的廣泛應用,對步進電機的控制的研究也越來越多,在啟動或加速時如果步進脈沖變化太快,轉子由于慣性而跟隨不上電信號的變化,產生堵轉或失步在停止或減速時由于同樣原因則可能產生超步。為防止堵轉、失步和超步,提高工作頻率,要對步進電機進行升降速控制。
步進電機的轉速取決于脈沖頻率、轉子齒數和拍數。其角速度與脈沖頻率成正比,而且在時間上與脈沖同步。因而在轉子齒數和運行拍數一定的情況下,只要控制脈沖頻率即可獲得所需速度。由于步進電機是借助它的同步力矩而啟動的,為了不發生失步,啟動頻率是不高的。特別是隨著功率的增加,轉子直徑增大,慣量增大,啟動頻率和最高運行頻率可能相差十倍之多。
步進電機的起動頻率特性使步進電機啟動時不能直接達到運行頻率,而要有一個啟動過程,即從一個低的轉速逐漸升速到運行轉速。停止時運行頻率不能立即降為零,而要有一個高速逐漸降速到零的過程。
步進電機的輸出力矩隨著脈沖頻率的上升而下降,啟動頻率越高,啟動力矩就越小,帶動負載的能力越差,啟動時會造成失步,而在停止時又會發生過沖。要使步進電機快速的達到所要求的速度又不失步或過沖,其關鍵在于使加速過程中,加速度所要求的力矩既能充分利用各個運行頻率下步進電機所提供的力矩,又不能超過這個力矩。因此,步進電機的運行一般要經過加速、勻速、減速三個階段,要求加減速過程時間盡量的短,恒速時間盡量長。特別是在要求快速響應的工作中,從起點到終點運行的時間要求最短,這就必須要求加速、減速的過程最短,而恒速時的速度最高。
國內外的科技工作者對步進電機的速度控制技術進行了大量的研究,建立了多種加減速控制數學模型,如指數模型、線性模型等,并在此基礎上設計開發了多種控制電路,改善了步進電機的運動特性,推廣了步進電機的應用范圍指數加減速考慮了步進電機固有的矩頻特性,既能保證步進電機在運動中不失步,又充分發揮了電機的固有特性,縮短了升降速時間,但因電機負載的變化,很難實現而線性加減速僅考慮電機在負載能力范圍的角速度與脈沖成正比這一關系,不因電源電壓、負載環境的波動而變化的特性,這種升速方法的加速度是恒定的,其缺點是未充分考慮步進電機輸出力矩隨速度變化的特性,步進電機在高速時會發生失步。